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Abstract

Background Intake-balance assessments measure energy intake (El) by summing energy expenditure (EE) with con-
current change in energy storage (AES). Prior work has not examined the validity of such calculations when EE is esti-
mated via open-source techniques for research-grade accelerometry devices. The purpose of this study was to test
the criterion validity of accelerometry-based intake-balance methods for a wrist-worn ActiGraph device.

Methods Healthy adults (n=24) completed two 14-day measurement periods while wearing an ActiGraph accel-
erometer on the non-dominant wrist. During each period, criterion values of El were determined based on AES
measured by dual X-ray absorptiometry and EE measured by doubly labeled water. A total of 11 prediction methods
were tested, 8 derived from the accelerometer and 3 from non-accelerometry methods (e.g., diet recall; included

for comparison). Group-level validity was assessed through mean bias, while individual-level validity was assessed
through mean absolute error, mean absolute percentage error, and Bland—Altman analysis.

Results Mean bias for the three best accelerometry-based methods ranged from -167 to 124 kcal/day, versus -104
to 134 kcal/day for the non-accelerometry-based methods. The same three accelerometry-based methods had
mean absolute error of 323-362 kcal/day and mean absolute percentage error of 18.1-19.3%, versus 353-464 kcal/
day and 19.5-24.4% for the non-accelerometry-based methods. All 11 methods demonstrated systematic bias

in the Bland-Altman analysis.

Conclusions Accelerometry-based intake-balance methods have promise for advancing El assessment, but ongoing
refinement is necessary. We provide an R package to facilitate implementation and refinement of accelerometry-
based methods in future research (see paulhibbing.com/IntakeBalance).
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Background

Energy intake (EI) plays a key role in regulating body
mass [1]. However, accurate measures of EI are difficult
to obtain in free-living environments. Self-report instru-
ments are standard tools for this purpose, but they are
associated with a high degree of error [2-5], leading to
many persistent challenges in dietary research and prac-
tice [6-9]. Thus, there is an ongoing need to develop
more valid and feasible measures of EI that avoid self-
report [10, 11].

The “intake-balance” method is a leading alternative
to self-report [12]. This method draws from the princi-
ple of energy balance, which is a model of the relation-
ship between energy expenditure (EE), EI, and changes
in energy storage (AES). The relationship is based on the
First Law of Thermodynamics, which states total energy
in a system remains constant, although it may be con-
verted from one form to another [13, 14]. When applied
to energy balance, the Law dictates that AES is negative
(i.e., weight loss) when EE exceeds EI, while AES is posi-
tive (i.e., weight gain) when EI exceeds EE. The nature of
this relationship (AES=EI — EE) allows any of the varia-
bles to be calculated based on the others. Thus, it is possi-
ble to back-calculate EI based on observed values for AES
and EE (i.e., EI=AES+EE). Normally, this is done using
gold standard methodology for assessing AES (repeated
scans by dual energy X-ray absorptiometry; DXA) and
EE (doubly labeled water; DLW) [14—16]. However, DLW
is cost-prohibitive and labor-intensive to use [17]. These
factors have led to increased interest in the use of other
EE assessment methods within the intake-balance frame-
work [18-21].

Accelerometry is a promising surrogate for DLW [22],
but there is currently an evidence gap regarding its use in
the intake-balance framework. Preliminary applications
have been focused on consumer-grade devices and oth-
ers for which the manufacturers provide limited informa-
tion about the prediction algorithms [18—-20]. Thus, there
is a need to increase the transparency and accessibility
of device-based intake-balance assessments. Research-
grade devices may be especially useful for this purpose,
given the growing emphasis on open-source methodol-
ogy when using such devices [23-26].

We recently demonstrated proof-of-concept for an
open-source and accelerometry-based approach in an
interventional setting [27]. However, the study was not
designed to test criterion validity. The purpose of the pre-
sent study is to address that gap by testing the criterion
validity of open-source accelerometry methods within
the intake-balance framework. A secondary purpose is
to compare the validity of these EI estimates to what was
achieved by standard assessment techniques (self-report
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and related tools), as a means of contextualizing the
accelerometer-based estimates in comparison to stand-
ard practice.

Methods

Participants

This is a secondary analysis of data from a prior obser-
vational study (clinicaltrials.gov registration number
NCT04142281) [20]. Participants were 24 adults who
gave written informed consent prior to beginning the
study. The procedures were approved by the Children’s
Mercy Kansas City Institutional Review Board.

Protocol

The parent study followed a repeated measures design.
Specifically, participants completed two 14-day DLW
measurement periods, separated by a 14-day isotope
washout period. At the start of each DLW measure-
ment period, participants came to the lab in the morning
(before 09:00) after an overnight fast. Their visit included
body composition assessment via DXA (Lunar iDXA, GE
Healthcare, Chicago, IL, USA) followed by DLW dos-
ing. For the DLW dosing, two urine samples were col-
lected, with 1-2 voids in between. The first sample was
collected prior to ingesting the isotopes to determine
background isotope abundance. The second was taken
4.5-5.0 h afterward. Participants were then fitted with
an ActiGraph GT9X to be worn on the non-dominant
wrist for the ensuing 14 days in free living (ActiGraph
LLC, Pensacola, FL).

During the two-week free-living assessment, partici-
pants provided a third urine sample on Day 7. They also
completed 2-3 diet recall surveys in which they reported
all food and drink consumed the previous day. As
described by Shook et al. [20], the multipass survey meth-
ods were carefully designed and consistent with standard
practice, including rigorous training for both study staff
and participants [28—-31]. The surveys were administered
by a registered dietician via telephone, using the Nutrient
Data System for Research Software, version 2017 [28].
Survey delivery was standardized across participants to
ensure consistency and reduce risk for response bias. All
surveys were administered on randomly selected non-
consecutive days, including at least one weekday and one
weekend day.

At the conclusion of the free-living period, partici-
pants came back to the lab to return their ActiGraph
monitor, provide a fourth urine sample, and have a sec-
ond DXA scan. The dates and times of all urine samples
were logged, and samples were stored in a -80°C freezer
until study completion. The samples and logs were then
shipped to Pennington Biomedical Research Center
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(Baton Rouge, LA, USA) for batch analysis in their Mass
Spectrometry Core. ActiGraph data were downloaded
and stored in raw acceleration format (.gt3x files) and
“activity count” format (.agd files, in 60-s epochs).

Criterion measure of El

Criterion values for EI were derived by summing EE
(DLW) and AES (DXA). EE was determined by measur-
ing the isotope elimination rates in the urine samples,
which were then used to calculate total EE, expressed as
a daily average (kcal/day) [17, 32]. As shown in Eq. 1 [18],
AES was determined from changes in fat mass (AFM, in
kg) and fat-free mass (AFFM, in kg), with scaling for the
duration of the measurement period (i.e., 14 days).

AES (kcﬂl/dﬂy) — IOZO*AFFZ\/IIZ95OO*AFM (1)

Comparison measures of El

A total of 11 methods were tested against the criterion
values. Eight were derived from the wrist-worn Acti-
Graph data, and three were from other techniques.
Below, each method is described in greater detail.

Accelerometry-based measures

The eight ActiGraph methods were subdivided into four
pairs. The first pair included the Hildebrand linear [33, 34]
and non-linear [35] methods, both of which were regres-
sion-based methods predicting oxygen consumption
(VO,) from accelerometer data collected at the non-dom-
inant wrist. The calculations were made after combining
all three axes of acceleration data (in milli-gravitational
units) into a single variable called the Euclidian Norm
Minus One (ENMO; Eq. 2). Negative values were rounded
up to 0, and second-by-second averages were calculated.
The linear method was a piecewise function, as shown in
Eq. 3. The non-linear method was a power function, as
shown in Eq. 4. Due to the lack of intercept in the non-
linear method, a floor value of 3.0 ml/kg/min was applied,
consistent with intended use [35]. The same lower bound
was applied for the linear method. For both methods, a
ceiling of 70 ml/kg/min was applied. Predictions were
generated each second for both methods, then smoothed
by calculating minute-level averages. Lastly, VO, was
converted to kcal assuming a respiratory quotient of 0.85
(4.862 kcal/L from the table of Lusk [36]). The assumed
respiratory quotient was chosen due to its prevalence in

Sedentary :
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EE research and the limited amount of accompanying
error, relative to individualized values calculated based on
dietary intake among weight-stable individuals consum-
ing a western diet [37, 38].

ENMO (milli —g) = VX2 + Y2+ 22 -1 2)

3.0V ENMO < 44.8
7.28 + 0.032 * ENMOY ENMO > 44.8

3)
VO, (ml/kg/min) = 0.901 % ENMO®534 @

VO, (ml/kg /min) = {

The second pair of accelerometry-based methods came
from Hibbing et al. [39], who presented two-regression
methods for the left and right wrists. Both versions were
tested in the present study by applying them to the non-
dominant wrist data. (The rationale and implications of
this approach are discussed later.) Like the Hildebrand
methods, the two-regression methods took second-by-
second ENMO as input. Predictions were generated in
three steps, beginning with application of a sedentary
cut point. For non-sedentary observations, a second
cut-point was then applied to differentiate continuous
walking and running from intermittent activity. The lat-
ter cut-point was based on coefficient of variation in the
signal, calculated with a specialized sliding window tech-
nique described elsewhere [39, 40]. Briefly, the sliding
window technique involved calculating the coefficient of
variation among each data point and various combina-
tions of its preceding and succeeding data points, then
selecting the lowest value. After classifying each non-
sedentary data point as either continuous walking and
running or intermittent activity, the third step involved
predicting EE via activity-specific regression equations
(for non-sedentary epochs) or a static EE value of 1.25
METs (sedentary epochs). The left and right wrist meth-
ods are summarized in Egs. 5 and 6, respectively, where
CWR, CV, and IA represent continuous walking and run-
ning, coefficient of variation, and intermittent activity,
respectively. All MET predictions were constrained using
floor (1.25 METs) and ceiling (20 METs) limits. Predic-
tions were made for each second of data, then smoothed
by calculating minute-level averages. Conversion to kcal
was done assuming 1 MET =3.5 ml/kg/min, then using
the same VO, conversion factor described previously for
a respiratory quotient of 0.85.

125V ENMO < 45.6

METs = CWR : —12.13 + 3.1381 % log(ENMO) ¥V CV < 19.4% N ENMO > 45.6 (5)
IA : 0.81 + 0.03033 ¥ ENMO — 0.00005 % ENMO? + 0.00000002 * ENMO3? ¥V CV > 19.4% N ENMO > 45.6
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Sedentary : 1.25V ENMO < 60.2
METs = CWR : —8.86 + 2.6564 + log(ENMO) ¥ CV < 21.2% N ENMO > 60.2 (6)
IA : 0.82 + 0.03423 = ENMO — 0.00004 x ENMO? + 0.00000004 x ENMO® V CV > 21.2% N ENMO > 60.2

The third pair of methods came from Montoye et al.
[41], who presented neural networks for the left and
right wrists. Like the Hibbing methods, both neural
networks were applied to the non-dominant wrist data
from the present study. To do this, raw data were sum-
marized every 30 s using percentiles and lagged covari-
ance, which were then fed into the neural networks to
predict METs. The values were constrained to a range
of 1-20 METs and converted to VO, and kcal in the
same manner described previously for the Hibbing
two-regression methods.

The final pair of methods came from Staudenmayer
et al. [42], who presented a linear regression equation
and random forest to predict METs from monitors
worn on the dominant wrist. (The applicability of these
dominant-specific models to the non-dominant data in
this study is discussed later.) Both methods used identi-
cal features (n=2) to predict METs every 15 s. The first
feature was the standard deviation of the signal vector
magnitude, where vector magnitude was the root sum
of squares across all three axes. The second feature was
the mean inclination angle of the monitor. The linear
regression equation is given in Eq. 7. Predictions were
treated in the same manner described for the Montoye
methods, i.e., by truncating to a range of 1-20 METs,
then converting to VO, and finally to kcal.

then generated two predictions, one being for weight
change (i.e., the predicted daily EI required for accom-
plishing the observed change in body mass over the
course of the measurement period) and the other being
for weight maintenance (i.e., the predicted EI required
for maintaining the original body mass).

Lastly, we tested self-reported EI from the dietician
administered recall surveys. Values were calculated
for each participant by taking the mean of their survey
responses. This was done separately for each of the two
14-day measurement periods.

Accelerometer data processing and aggregation

Accelerometer data were screened for non-wear and
sleep using the methods of Choi et al. [45] and Tracy
et al. [46], respectively. Valid days were defined as hav-
ing>10 h of awake wear time, with invalid days (those
with <10 h of awake wear time) being excluded from the
analysis. Participant-level screening was also performed,
with participants being excluded if they did not have >4
valid days. On valid days, basal EE values were imputed
for minutes that were classified as non-wear or sleep.
These values were calculated using Schofield’s equations
with weight and height as predictors, again using the spe-
cific equations corresponding to each participant’s sex
and age group [44]. After calculating total EE for each

METs = 1.89378 + 5.50821(SDyector magnitude) — 0.02705 (mean inclination angle) @)

Other measures

Three additional EI estimation methods were tested.
The first two were obtained from the body weight plan-
ner of the National Institute of Diabetes and Diges-
tive and Kidney Diseases (NIDDK) [43]. The estimates
were extracted using methods described in our recent
interventional proof-of-concept paper [27]. Specifi-
cally, we used the online interface (see niddk.nih.gov/
bwp) in expert mode with advanced controls activated.
We filled in the measured body mass from Days 1 and
14 of each measurement period, along with partici-
pant demographics and related information (including
physical activity level, based on DLW and predicted
basal metabolic rate from Schofield’s equations [44]).
The Schofield equations were specific to each partici-
pant’s sex and age group, with estimates obtained using
weight and height as predictors. Based on these obser-
vations and the time elapsed between them, the planner

valid day, an average EE was calculated (kcal/day), which
was then summed with AES to determine estimates of EIL

Statistical analysis
Participant characteristics were summarized using mean
and SD for continuous variables and frequencies for cat-
egorical variables. Excess body fat was summarized using
World Health Organization cutoffs of>25% for males
and > 35% for females [47, 48]. Dietary behavior was sum-
marized using the Healthy Eating Index, an instrument
that scores diet quality on a scale from 0 to 100 [49, 50].
For each method, we used mixed effects regression to test
three accuracy metrics, namely bias (i.e., predicted — DLW),
absolute error (ie., |predicted — DLW|), and percentage
. |predicted—DLW | 9 .
error (e, “—p——— * 100%). Metrics were first cal-
culated for each participant occasion, then regressed on a
null set of predictors with a random participant intercept.
The latter formulation allowed the fixed-effect intercepts
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to reflect a mean value when accounting for repeat testing
within participants. Thus, the intercepts reflected mean bias,
mean absolute error (MAE), and mean absolute percentage
error (MAPE). A total of 33 models were fitted, correspond-
ing to the 3 accuracy metrics applied to 11 measures of EL
P-values were adjusted using the false discovery rate correc-
tion to account for the number of tests [51].

Error trends were further examined using Bland—-Alt-
man methods for repeated measures [52-54]. To do
this, we first extracted standard deviation (SD) of the
random effects from the aforementioned mean bias
models to facilitate calculating limits of agreement
(mean bias + 1.96 x SD). We also fitted additional mod-
els in which individual bias scores were regressed against
criterion values from DLW, represented as a fixed effect.
(The DLW values were used instead of the mean of DLW
and predictions, because DLW is a criterion measure
[55].) A random intercept effect was again included to
account for repeat testing within participants. The slope,
marginal R?, and conditional R* of the resulting models
were descriptively examined to assess the degree of sys-
tematic error for each method.

Hereafter, summary statistics are given as mean + SD.

Results

Table 1 shows participant information. Accelerometer
variables, EE values, and EI values are summarized in
Table 2. Four male participants had a body fat percent-
age >25% (range: 27.3-33.3%), and five female participants
had a body fat percentage >35% (range: 35.0-50.1%). The
remaining participants fell in the ranges of 12.8-24.3%

Table 1 Summary of participant characteristics. Values are
mean+SD for continuous variables, and n (%) for categorical
variables

Female (n=14) Male (n=10) Total (N=24)

Age (y) 295+6.1 324+10.6 30.7+8.2
Height (cm) 1683+7.8 176.7+4.5 171.8+7.8
Weight (kg) 68.7+£9.8 80.7+£10.7 737116
BMI (kg/m?) 244445 258+30 250440
Weight Status
Healthy Weight 8 (57%) 5 (50%) 13 (54%)
Overweight 4 (29%) 4 (40%) 8 (33%)
Class 1 Obese 2 (14%) 1 (10%) 3(12%)
Schofield BMR (kcal/ 1,457+112 1,843+134 1,618+228
day)
Fat Free Mass (kg) 455451 623+7.7 525+104
Fat Mass (kg) 235+88 184+79 214+87
Body Fat (%) 334+87 224+78 288+99

BMI Body mass index, BMR Basal metabolic rate
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(males) and 22.6-34.1% (females). Across all recall assess-
ments, the Healthy Eating Index was 66.5+14.9, consid-
erably higher than the national average of 58 (see https://
www.fns.usda.gov/healthy-eating-index-hei).

For five participants, self-report data were incom-
plete (n=2) or missing altogether (n=3). All available
self-report data were used when presenting summary
statistics (see Table 2), whereas only the 19 partici-
pants with complete data from both timepoints were
included when presenting self-report data in the formal
analyses. All other results (accelerometry-based and
NIDDK) are presented for the full 24-person sample.
When using the NIDDK Body Weight Planner, there
were three instances where the physical activity level
from DLW (i.e., total energy expenditure divided by
Schofield predicted BMR) was less than the minimum
allowable value in the online system (1.111). The mini-
mum value of 1.111 was used in those cases.

Figure 1 shows mean bias, MAE, and MAPE. Means
and 95% confidence intervals are provided in the sup-
plementary material (see Table S1). The majority of
methods tended to overestimate EI, with mean bias
ranging from 104 kcal/day (NIDDK weight loss model;
p=0.31) to 586 kcal/day (Staudenmayer linear model;
»<0.001). In contrast, the Hildebrand and self-report
methods tended to underestimate, with mean bias
ranging from -302 kcal/day (Hildebrand linear model;
»<0.001) to -104 kcal/day (self-report; p=0.35).

Results showed a general distinction between the
six best-performing methods (Hildebrand non-linear
method, both Hibbing methods, both NIDDK meth-
ods, and self-report) and the five remaining methods
(Hildebrand linear method, both Montoye methods,
and both Staudenmayer methods). Specifically, the
distinctions between these groups were fairly consist-
ent when comparing mean bias (+ 104—-167 for the six
best versus+301-586 kcal/day for the five others),
MAE (323-463 versus 425-607 kcal/day), and MAPE
(18.1-24.4% versus 19.5-34.7%). Notably, the NIDDK
method for weight loss had the lowest mean bias yet
the fifth highest MAE, suggesting the favorable mean
bias score was achieved through cancelation of over-
and underestimates. In contrast, the NIDDK method
for weight maintenance ranked highly for both mean
bias and MAE.

Bland—Altman results are shown in Fig. 2. The stand-
ard deviation of bias scores was substantially higher
for the NIDDK weight loss and self-report methods
(611-619 kcal/day) than for the other methods (434—
467 kcal/day). Consequently, limits of agreement were
much wider (total widths of 2396—2427 kcal/day versus
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Table 2 Summary of accelerometer data, energy expenditure, and energy intake. Values are mean+SD. N=24, except where

otherwise noted

First Assessment

Second Assessment Both Assessments

Sleep Time (h/day)’ 8.7+09
Non-Wear Time (h/day) 02+03
N Days (DLW/DXA) 14.0+0.0
N Valid Days (accelerometer) 13.0+0.7
AEnergy Storage by DXA (kcal/day) -145+434
Energy Expenditure (kcal/day)
DLW 2,524+619
Hildebrand Linear Model 2,207 +£349
Hildebrand Non-Linear Model 2,346+371
Hibbing Left Wrist 2RM 2,622+415
Hibbing Right Wrist 2RM 2,637 +£422
Montoye Left Wrist ANN 2,966 +454
Montoye Right Wrist ANN 3,089+£514
Staudenmayer Linear Model 3,001 £483
Staudenmayer Random Forest 3,089 +£506
Energy Intake (kcal/day)
DLW 2,379+£917
Hildebrand Linear Model 2,062+516
Hildebrand Non-Linear Model 2,201+528
Hibbing Left Wrist 2RM 2,477 £564
Hibbing Right Wrist 2RM 2,492 £567
Montoye Left Wrist ANN 2,821 +609
Montoye Right Wrist ANN 2,944+ 647
Staudenmayer Linear Model 2,946 +651
Staudenmayer Random Forest 2,944 + 645
Body Weight Planner (Weight Loss) 2,556+670
Body Weight Planner (Weight Maintenance) 2,562 +579
Self-Report® 21174538

86+10 86+09
05+0.7 04+05
140+0.2 140+0.1
13.1+£04 13.1+£06
-89+413 -117+420
2474+512 2,499+562
2,188+£358 2,197 £350
2,318+378 2,332+371
2,596+416 2,609+412
2,610£423 2,623+418
2,929 +446 2,948 £445
3,045+518 3,067 £511
3,079+490 3,085+481
3,061 £509 3,075+503
2,385+663 2,382+792
2,099+493 2,081+500
2,229+500 2,215+509
2,507£523 2,492+539
2,521£525 2,506 +541
2,840+560 2831£579
2,956+592 2,950%613
2,990+623 2,968 +630
2972+607 2,958+£620
2416+629 2,486+647
2470+524 2,516+548
2,268+626 2,196+583

DLW Doubly labeled water, DXA Dual energy X-ray absorptiometry, 2RM Two regression model, ANN Artificial neural network

2 Calculated as sum of minute-by-minute values for each calendar day (typically with some sleep time in the morning and some in the evening, i.e., not reflective of

continuous overnight sleep intervals)

b Calculated after excluding missing participant values from the first and second assessments (n=5 and n=3, respectively)

1700-1829 kcal/day), indicating worse individual-level
validity. Systematic error was evident for all meth-
ods, yet in varying degrees. All slopes were negative,
with magnitudes of 0.34—0.43 for the accelerometry-
based methods versus 0.56—0.63 for the NIDDK and
self-report methods. Marginal R?> was 0.36-0.46 for
the Montoye, Staudenmayer, and NIDDK weight loss
methods, versus 0.55-0.65 for the others. In contrast,
conditional R? was 0.82-0.88 for all methods except the
NIDDK weight loss method (0.76).

Discussion

Summary and key findings

In this study, we evaluated the criterion validity of vari-
ous methods for assessing EI. Our primary focus was

the use of accelerometry-based methods for wrist-worn
activity monitors, applied within the intake-balance
framework. The strongest evidence of criterion valid-
ity (both group- and individual-level) was seen for the
Hildebrand non-linear method and the two Hibbing
methods. It is difficult to fully explain why these meth-
ods exceled, but likely factors include the robustness of
the original calibration protocols [33, 39] and advan-
tages of the modeling structures themselves (e.g., low
susceptibility to overfitting).

A secondary purpose of our study was to compare the
validity of accelerometry-based methods to that of prom-
inent non-accelerometry-based methods (i.e., NIDDK
and self-report). This allowed examination of the degree
to which accelerometry-based methods may improve on
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the current status quo when measuring EI. The Hilde-
brand non-linear and Hibbing methods showed promise
in this area as well. Specifically, their group-level validity
was comparable to the non-accelerometry-based meth-
ods, and their individual-level validity was generally bet-
ter (including substantial advantages over the self-report
and NIDDK weight loss methods).

Because the validity of each method in our study was
anchored to criterion estimates, the analyses provide
valuable insight about the degree of error that can be

expected when applying the methods in the field. Taken
together, the results suggest wrist-worn accelerometry
methods (i.e., the Hildebrand non-linear and Hibbing
methods) have competitive validity compared to tradi-
tional measures of EI. Below, we discuss the importance
of this study and the accelerometry-based intake-bal-
ance method, along with sources of error, opportunities
for continued development, caveats for interpreting the
present findings, and considerations when selecting a
method to assess EI in future research.
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Importance of the study and method
To our knowledge, the present study is the first criterion
validation of device-based EI estimates when using open-
source methodology for a widely used research-grade
device (ActiGraph GT9X). This is a step forward, as prior
studies have either used closed-source devices [18, 20],
or else lacked a criterion measure [27]. The use of open-
source methodology is crucial for upholding FAIR prin-
ciples (Findability, Accessibility, Interoperability, and
Reusability) [56, 57] and for combating widespread usa-
bility issues in accelerometry [58]. It also provides meth-
odological transparency, in contrast to the well-known
“black box” design of most consumer-grade devices [59].
To facilitate ongoing development and application of the
accelerometry-based intake-balance methods through
open-source channels, we provide an R package and
vignette by which the major steps can be automated [60].
The accelerometry-based intake-balance approach
offers several key benefits compared to the standard
approach with DLW. One of the biggest examples is its
relatively low cost, which makes it accessible to a wider
range of researchers. A related benefit is that the acceler-
ometry-based method does not require urine collections
or isotope analyses, and thus places lower burden on both
participants and researchers. Together, these benefits
make the accelerometer-based intake balance approach
highly scalable for large studies. However, despite its con-
ceptual value and the empirical promise that was shown
in this study, there are also important considerations that
may require additional research, as discussed below.

Sources of error and opportunities for refinement

During non-wear periods, the accelerometer-based intake-
balance method requires imputation of EE values. For the
present study, this was done using estimates of basal meta-
bolic rate from Schofield’s equations [44]. The latter choice
was made both for consistency with our original proof-of-
concept study [27] and because the Schofield equations
remain widely used in accelerometry and physical activity
research [61-63]. Nevertheless, other equations (particu-
larly Henry’s [64]) are more common in clinical nutrition
research. This represents an opportunity for further test-
ing and refinement of the accelerometer-based intake-bal-
ance method, through future studies that test the impact
of using different prediction equations. Similarly, our pro-
cedures involved an assumed respiratory quotient of 0.85
when converting VO, to kcal. While this is common prac-
tice [38] and consistent with our original proof-of-concept
study [27], an alternative approach would be to individu-
alize the values by using calculated food quotient in place
of the assumed respiratory quotient [37]. Future work
could explore how estimates of EI change when using the
assumed versus individualized values.
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Handedness and sidedness are additional sources of
error that may have impacted our results. In this study,
participants wore devices on the non-dominant wrist.
While this is the most common placement in wrist accel-
erometry, other placements are also widespread, includ-
ing placements on a specific side of the body without
accounting for dominance [65]. Accordingly, wrist-based
equations and models have been developed in differ-
ent ways, and there is no clear consensus concerning
which way is best or how much cross-applicability exists
between them. Prior research has frequently shown that
EE and physical activity predictions are similar regard-
less of which wrist the device is worn on [39, 41, 66—69],
and thus we chose not to restrict our analysis to meth-
ods that were specifically designed for the non-dominant
wrist. The appropriateness of this decision was borne out
by our results for the Hibbing methods (and, to some
degree, the Montoye methods as well), where results
were highly similar for the left-sided and right-sided ver-
sions. Nevertheless, further comments are warranted on
issues of handedness and sidedness.

Both handedness and sidedness have theoretical impli-
cations for wrist accelerometry, the former because
movement patterns may differ between the dominant
and non-dominant wrists [70], and the latter because
vertical axis orientation is reversed across wrists [71].
Together with the highly skewed population distribu-
tion of handedness [72], this makes it unclear how much
measurement error is attributable to handedness versus
sidedness. For example, a method that was calibrated for
the non-dominant wrist may actually be better suited to
the left side (regardless of dominance) unless left-handed
individuals were oversampled in the original calibration.
Conversely, a method for the right wrist may actually be
better suited to the dominant wrist for the same reason.

While it is difficult to conduct a theoretical analysis
that untangles the effects of handedness and sidedness
on wrist accelerometry, it is easy to perform sensitivity
analyses and determine if there are practically significant
effects to begin with. This was a key reason for includ-
ing the Hibbing and Montoye methods in our study, and
for testing the left-sided and right-sided versions of each
method separately rather than using the left-sided model
for right-handed participants and vice versa. As noted
above, the results were generally quite similar regardless
of which side the models were intended for. This suggests
that issues of handedness and sidedness had minimal
impact on the data in this study. It may also suggest that
none of the methods derived an advantage or disadvan-
tage from the degree of alignment between its original
calibration protocol and that of the current study. Never-
theless, these possibilities cannot be fully verified, and our
results should be interpreted with commensurate nuance.
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When considering the potential for measurement error
in this study, it is also important to consider the nature
of the protocol itself and the criterion measures. In par-
ticular, the present study protocol involved 14-day assess-
ment periods, which were ideal for DLW, yet only long
enough to elicit small changes in the DXA measures
(FFM and FM). Thus, the precision of DXA is important
to consider as a source of measurement error. Prior work
has shown the Lunar iDXA to yield rescan reliabilities of
0.5% and 1.0% coefficient of variation for FFM and FM,
respectively [73]. Given our sample means of 52.5 kg FFM
and 21.4 kg FM, this would translate to potential meas-
urement errors of roughly 0.26 and 0.21 kg, respectively,
ultimately propagating to EI errors up to~ 165 kcal/day
(see Eq. 1). Future studies are needed to validate the
accelerometer-based intake-balance method over longer
time periods, although it should be noted that study
duration presents a tradeoff in this respect, with longer
protocols being ideal for the assessment of AES while
shorter protocols are ideal for the assessment of EE.

Caveats and implications for method selection

While the present findings show promise when using
accelerometry-based methods to estimate EI, some
caveats are important to consider when interpreting our
results and selecting methods for future studies. One
important caveat is that our results from self-report and
accelerometry-based methods are not directly compa-
rable, due to the differing sample sizes (n=19 for self-
report versus 24 for accelerometry) and granularities
(2-3 measurements for self-report, versus continuous
assessment for accelerometry) of the methods. These fac-
tors may influence the level of validity observed in our
study. They are also reflective of each method’s strengths
and weaknesses, which should be carefully considered
when choosing a method in future studies. We have
already listed several key benefits of the accelerometry-
based approach, with additional strengths including its
objectivity and potential for collecting continuous data
over extended periods. The key drawbacks of the accel-
erometry-based approach hinge on managing the large
volumes of data collected. Some accelerometry-based
methods can also be computationally intensive, leading
to lengthy processing time. In contrast, the NIDDK and
self-report methods offer convenient and straightforward
means of application with a more manageable volume of
data. However, they cannot support continuous measure-
ment, nor can they be conveniently automated. That is,
self-report requires trained personnel to administer the
surveys while the NIDDK method requires manual data
entry for each participant, including a module to estimate
physical activity level (unless an estimate is provided
from another source such as accelerometry). Manual data
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entry is not only labor-intensive, but can also increase the
risk of data entry errors. When selecting a method, fur-
ther considerations include cost, applicability in different
populations such as children and adolescents, and bur-
den on participants and researchers (which may also have
implications for quality control).

Our analysis demonstrates another important consid-
eration for method selection, namely that some methods
(especially self-report) may perform well at the group
level but not the individual level, as evidenced by small
mean bias coupled with large MAE and wide limits of
agreement. Such methods may be suitable in some situ-
ations but not others. For instance, individual-level valid-
ity may not be a precondition for studies focused on
group comparisons, whereas it is essential for interven-
tions delivering individualized dietary prescriptions. It
should also be noted that the present study design did not
allow testing sensitivity to change for any of the methods.
This makes it unclear which method is most recommend-
able for research questions focused on change over time.
In general, these factors highlight that no single method
is the best choice for every study, and selections should
be made on a case-by-case basis. However, the present
findings provide strong evidence that an accelerometry-
based approach can be a valid option in some cases.

Study strengths and limitations

A strength of the present study was the repeated meas-
ures design with criterion measures of EE and AES.
Few other studies have included these rich characteris-
tics. However, the use of DLW also led to a small over-
all sample size, which was compounded by missing data
for the self-report method. As noted previously, the pre-
cision of DXA may have been a source of error in the
criterion measurements of AES. This limitation could
potentially have been addressed by using magnetic reso-
nance imaging instead, although prior work has shown
strong agreement between the latter method and DXA
when assessing whole-body lean and adipose tissue [74].
Another limitation was that the sample characteristics
were not representative of the general population, calling
for further research. This includes a need to better under-
stand how the performance of the EI assessment meth-
ods may be related with factors such as diet quality and
nutritional status.

Conclusions

Current accelerometry-based intake-balance methods
can achieve similar group-level validity to the estab-
lished NIDDK and self-report methods, along with indi-
vidual-level validity that is as good or better than the
latter methods. The most accurate accelerometry-based
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methods are the Hildebrand non-linear method and the
Hibbing two-regression models. However, all methods
showed room for improvement. The accelerometry-
based methods can be implemented and refined using
the R package developed as part of this study. Future
work should examine validity in youth populations and
evaluate accelerometry-based methods in terms of sen-
sitivity to change in an intervention setting. Accelerom-
etry-based methods for assessing EI have the potential
to increase the accuracy and efficiency of research in
nutrition and obesity.
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