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Abstract 

Background Car use has been associated with higher risk of coronary heart disease (CHD). However, 
whether the associations of transport modes with CHD vary by genetic susceptibility to CHD are unknown. This study 
aims to investigate the associations of genetic susceptibility and modes of transport with incidence of CHD.

Methods We included 339,588 white British participants from UK Biobank with no history of CHD or stroke at base-
line or within two years of follow-up (52.3% in work). Genetic susceptibility to CHD was quantified through weighted 
polygenic risk scores derived from 300 single-nucleotide polymorphisms related to CHD risk. Categories of trans-
port mode included exclusive car use and alternatives to the car (e.g., walking, cycling and public transport), 
separately for non-commuting (e.g., getting about [n=339,588] excluding commuting for work), commuting (in 
the sub-set in work [n=177,370] who responded to the commuting question), and overall transport (transport 
mode for both commuting and non-commuting [n=177,370]). We used Cox regression with age as the underlying 
timescale to estimate hazard ratios (HR) of CHD (n=13,730; median 13.8-year follow-up) and tested the interaction 
between genetic susceptibility and travel modes with adjustment for confounders.

Results Compared to those using alternatives to the car, hazards of CHD were higher for exclusive use of cars 
for overall transport (HR: 1.16, 95% confidence interval (CI): 1.08-1.25), non-commuting (HR: 1.08, 95% CI: 1.04-1.12) 
and commuting (HR: 1.16, 95% CI: 1.09-1.23), after adjusting for confounders plus genetic susceptibility. HRs of CHD 
were 1.45 (95% CI: 1.38-1.52) and 2.04 (95% CI: 1.95-2.12) for the second and third tertile of genetic susceptibility 
to CHD, respectively, compared to the first. There was, in general, no strong evidence of interactions between genetic 
susceptibility and categories of overall, non-commuting and commuting transport. Estimated 10-year absolute risk 
of CHD was lower for the alternatives to the car across strata of genetic susceptibility, compared with exclusive use 
of cars for overall, non-commuting and commuting transport.

Conclusion Exclusive use of cars was associated with a relatively higher risk of CHD across all strata of genetic 
susceptibility. Using alternatives to the car should be encouraged for prevention of CHD for the general population 
including individuals at high genetic risk.
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Introduction
Coronary heart disease (CHD) is a major public health 
burden, causing 9.14 million deaths and 182 million dis-
ability-adjusted life years globally [1]. Development of 
CHD is attributable to both lifestyle and genetic traits [2, 
3]. Physical activity is a key lifestyle behavioural predic-
tor of CHD [4]. However, levels of physical activity have 
declined substantially over the past few decades, primar-
ily driven by changes in technology and transport [5]. As 
such, active modes of commuting and non-commuting 
transport can play an integral role in the accumulation of 
daily activity [6]. For example, transport-related physical 
activity can account for over 11% of overall daily physical 
activity or daily physical activity energy expenditure, and 
passive transport for 6% of daily sedentary time among 
adults [7]. According to a survey conducted by Trades 
Union Congress, the average commuting time in the UK 
was 59 minutes a day in 2018 [8]. Previous research has 
found that car use, as opposed to alternatives to the car 
(walking, cycling and public transport), was associated 
with higher risks of cardiovascular disease mortality [9] 
and CHD [10]. However, the World Health Organization 
guidelines on physical activity and sedentary behaviour 
specifically indicate the need for further research on the 
health impacts of different types of transportation, which 
is a major target domain for promoting physical activ-
ity [6]. Of public health strategies that promote physical 
activity, interventions employing a multi-level and multi-
component approach with support from public health 
and transport policies have the potential for promot-
ing more active modes of travel, and thereby, generating 
small but sustainable population-level changes in physi-
cal activity [11–13]. As such, promoting active trans-
port as a means of increasing physical activity as well as 
preventing cardiovascular disease is currently of public 
health relevance.

Evidence suggests that up to 70% of the heritability of 
CHD can be accounted for by known single nucleotide 
polymorphisms (SNP) [14]. Polygenic risk scores (PRS) 
derived from a multitude of genetic variants for CHD 
have the potential for stratifying individuals by genetic 
risk, thereby making it possible to identify a subset of 
individuals at high genetic risk of CHD [15]. While pre-
vious research has investigated the interplay of lifestyle, 
behaviour-related traits and genetic risk of CHD [16–20], 
there is currently limited understanding of the role that 
active transport could play in CHD prevention when 
genetic risk of CHD is taken into consideration. There 
can also be different implications of using an inactive 
mode of transport (e.g., cars) for the risk of CHD across 
the spectrum of genetic risk of CHD. The purpose of this 
study was, therefore, to examine whether associations of 
modes of transport with incident CHD are independent 

of and vary depending on genetic susceptibility to CHD 
using a large prospective cohort study.

Methods
Study design and participants
The UK Biobank is a large-scale prospective commu-
nity-based cohort study including more than half a mil-
lion UK adults aged 40-69 years upon recruitment who 
lived within 25 miles of 1 of 22 assessment centres across 
England, Scotland and Wales. At baseline (from 2006 
to 2010), a comprehensive series of variables were col-
lected including assessments of lifestyle behavioural vari-
ables (including transport mode used, smoking, alcohol, 
physical activity and diet) and socio-demographic indica-
tors at baseline, through self-administered touch-screen 
questionnaires, measurements of physical characteris-
tics (height, weight, grip strength, etc.) and collection 
of biological samples (blood, urine and saliva) [21]. The 
protocol of UK Biobank is described in more detail else-
where [22, 23]. UK Biobank was approved by the North-
west Multicentre Research Ethics Committee (reference 
no. 11/ NW/0382) and all participants provided writ-
ten informed consent prior to participation. This study 
included 333,426 white British individuals (based on 
self-reported ethnicity combined with principal compo-
nent analysis of genotype data), after excluding preva-
lent cases of CHD and stroke and those experiencing an 
event in the first two years of follow-up, as well as partici-
pants with any missing data for any of the covariates (See 
Fig. 1).

Exposures
Polygenic risk scores for CHD
In the UK Biobank project, genotyping was conducted 
on all participants with two types of genotyping arrays, 
UK BiLEVE and UK Biobank Axiom [24]. We included 
300 genome-wide significant and uncorrelated SNPs (at 
a false discovery rate of 5%) [25, 26] known to be associ-
ated with risk of CHD (Supplemental Table 1 and Supple-
mental Figure 1). Weighted PRS for CHD were calculated 
that represent each individual’s genetic susceptibility to 
CHD. Specifically, the calculation of each individual’s 
weighted PRS was based on the sum of the products 
of risk-increasing alleles for each of 300 SNPs and its 
respective known effect estimates [25]. Three categories 
of genetic risk of CHD were generated according to the 
tertiles of PRS: low, medium, and high genetic risk.

Mode of transport
In UK Biobank, the information of participants’ mode 
of transport was collected at baseline through question-
naires. Participants were asked to response to two trans-
port-related questions: “What types of transport do you 
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use to get to and from work?” (indicative of transport for 
commuting), and "In the last 4 weeks, which forms of 
transport have you used most often to get about? (Not 
including any journeys to and from work)” (indicative 
of transport for non-commuting). A total of 6 response 
options were provided for each of these two questions: 
car/motor vehicle, walk, public transport, cycle, “none of 
the above” and “prefer not to answer” (See Supplemental 
Figure 2). For each question, participants were allowed to 
choose more than one option, which precluded the pos-
sibility of generating multiple distinctive categories of 
mode of transport in the same analysis. We, therefore, 
created two types of travel mode for commuting and non-
commuting transport separately: exclusive use of cars 
and alternatives to the car (derived based on exclusive 
use of either walking, cycling or public transport alone, 
or in combination with use of cars). Similarly, we gen-
erated three types of travel mode for overall transport: 
exclusive use of cars, mixed transport mode (i.e., active 
transport for commuting and exclusive use of cars for 
non-commuting; or active transport for non-commuting 
and exclusive use of cars for commuting) and alternatives 
to the car. Participants who only reported “none of the 
above” or “prefer not to answer” were excluded in the 
present analysis. No information on trip frequency and 
distance was reported for each mode of transport.

Outcome
We used Codes of International Classification of Diseases 
(ICD) (ICD-9: 410-412, ICD-10: I21-I24, I25.2) and Office 
of Population Censuses and Surveys Classification of 
Interventions and Procedures Version 4 (OPCS-4) clas-
sifications [OPCS-4: K40-K46, K49, K50.1, K50.2, K50.4, 
K75] to identify CHD cases based on hospital admission 
records, operation procedures and death records. Inci-
dent CHD was defined as the first occurrence of CHD 
events accrued over a 13.8-year median follow-up (inter-
quartile range: 13.1-14.5 years); last censored on Decem-
ber 9, 2022, for participants in England and Wales, and 
December 19, 2022, for participants in Scotland. A total 
of 13,730 incident CHD cases were included in the pre-
sent analysis.

Confounders
Models were adjusted for the following variables (cho-
sen based on established knowledge according to the 
established practice [27]) that may serve as confound-
ers (not acting as mediators) [28] in the associations of 
mode of transport with CHD incidence: age (underlying 
timescale), sex, body mass index (kg/m2), smoking status 
(never, previous, current), Townsend Deprivation Index 
(a composite score of employment, car ownership, home 

Fig. 1 Participants’ flow chart
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ownership and household overcrowding indicating area-
specific deprivation), alcohol intake (never, previous, <3 
times er week, current [more than 3 times per week]), 
salt intake (never/rarely, sometimes, usually, always), oily 
fish consumption (never, less than once per week, once 
per week, more than once per week), coffee intake (cups 
per day), fruit and vegetable intake (score ranging from 
0-4 based on fresh/dried fruit intake and raw/cooked 
vegetable intake), processed/red meat intake (days per 
week), blood-pressure-lowering medication use, cho-
lesterol-lowering medication use, TV viewing (hours/
day in 1-hour increment), computer use (hours/day in 
1-hour increment), sleep (hours per day in 1-hour incre-
ment), walking for pleasure (minutes per day), light do-it-
yourself activities (minutes per day), heavy do-it-yourself 
activities (minutes per day), strenuous sports (minutes 
per day), other exercises (such as swimming, cycling, 
keeping fit; minutes per day), binary genotyping array 
type and the first ten principal components of genetic 
ancestry (to adjust for population stratification) [29].

Statistical analyses
Cox regression models using age as the underlying time-
scale were used to estimate the associations between 
modes of transport and incident CHD with adjustment 
for all confounders; all models were fit after excluding 
incident CHD cases accrued over the first two years of 
follow-up and using cluster-robust standard errors [30] 
to adjust for the  2nd-degree genetic relatedness (defined 
as kinship coefficients between 0.0442 and 0.0884) [31]. 
Models using PRS as exposure were adjusted for sex, 
genotyping array type and the first ten principal compo-
nents of genetic ancestry. For joint association analyses, 
we generated 6 joint groups based on the combination 
of tertiles of PRS and two types of transport (3 genetic 
risk categories × 2 types of transport) for non-commut-
ing and commuting transport separately; and 9 joint 
groups (3 genetic risk categories × 3 types of transport) 
for overall transport. We tested both multiplicative and 
additive interactions between transport modes and PRS 
for incident CHD in models adjusted for all confound-
ers. There were no covariates with high multicollinear-
ity (Supplemental Table 2). Cumulative hazards of CHD 
across all ages were plotted for categories of mode of 
transport and PRS. We estimated 10-year absolute risk 
of CHD for each category of PRS and mode of transport. 
An interaction directed acyclic graph is provided in Sup-
plemental Figure 3. We performed five sensitivity analy-
ses: (1) excluding incident CHD events accrued over the 
first four years of follow-up to further address potential 
reverse causation, (2) retaining 1 participant randomly 
selected from each set of genetically related individuals 
(at  2nd-degree) to address any potential bias arising from 

the misclassification of genetically defined family mem-
bership, (3) using a weighted polygenic risk score cal-
culated using 46 lead SNPs (from 46 loci) genome-wide 
significant at a p-value of 5×10-8 and in low linkage dis-
equilibrium according to an r2 value of <0.001 (Supple-
mental Figure 4), (4) using a multiple imputation method 
to deal with missing covariates (assuming data missing 
at random; Supplemental Table  3), and (5) using CHD 
follow-up data censored on March 1st, 2020 to remove 
the potential possibility that some CHD cases were not 
adjudicated due to participants’ fear for visiting hospitals 
during the Coronavirus disease 2019 (COVID-19) pan-
demic. Analyses were performed using Stata/MP Version 
17.0 (StataCorp LP, College Station, TX).

Results
Table  1 presents the characteristics of individuals for 
overall transport, non-commuting transport, and com-
muting transport. Approximately 37% of individuals 
(N=66,072) self-reported exclusive use of cars for over-
all transport; about 39% of individuals (N=132,211) and 
65% of individuals (N=115,915) used cars exclusively for 
non-commuting and commuting, respectively. Mean age 
and proportions of medication use were higher in par-
ticipants included in the analysis for non-commuting 
transport than in those in the analyses for overall and 
commuting transport.

Table  2 summarises the results of the associations 
between transport modes and incident CHD. Compared 
with using alternatives to the car for transport, exclusive 
use of cars and mixed transport mode for overall trans-
port were associated with 16% (hazard ratio (HR): 1.16, 
95% confidence interval (CI): 1.08-1.25) and 11% higher 
hazards of CHD (HR: 1.11, 95% CI: 1.03-1.19), respec-
tively, after adjusting for all confounders and PRS for 
CHD. Participants who used cars exclusively for either 
non-commuting (HR: 1.08, 95% CI: 1.04-1.12) or com-
muting (HR: 1.16, 95% CI: 1.09-1.23) had higher CHD 
hazards compared with those who used the alternatives 
after adjustment for PRS as well as confounders. These 
findings were, in general, similar in sensitivity analyses, 
as presented in Supplemental Tables 4, 5, 6, 7 and 8.

In Figure 2, we present the cumulative hazards of CHD 
for categories of transport modes and genetic risk across 
the age range. For overall transport, commuting and non-
commuting transport, participants exclusively using cars 
had higher levels of cumulative CHD hazards at all ages, 
compared with using alternative modes of transport. 
Compared with individuals with low genetic susceptibil-
ity, those with medium and high genetic susceptibility 
had higher risk of CHD, after adjusting for age (underly-
ing timescale), sex, genotyping array type and the first ten 
principal components of genetic ancestry.
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Table 1 Characteristics of individuals overall and within three categories of commuting and non-commuting

Variables All 
(N=339,588)

Overall transport (N=177,370) Non-commuting transport 
(N=339,588)

Commuting transport 
(N=177,370)

Exclusive 
use of cars 
(N=66,072)

Mixed 
transport 
(N=62,917)

Alternatives 
to the car (N= 
48,381)

Exclusive use 
of cars (N= 
132,211)

Alternatives 
to the car (N= 
207,377)

Exclusive use 
of cars (N= 
115,915)

Alternatives 
to the car (N= 
61,455)

Age, years 56.7 (8.0) 52.5 (6.8) 52.2 (6.8) 52.1 (6.9) 56.0 (7.9) 57.2 (8.1) 52.4 (6.8) 52.1 (6.8)

Sex, n (%)

 Men 154,007 (45.3) 33,339 (50.6) 30,788 (48.9) 21,817 (45.1) 62,235 (47.1) 91,772 (44.1) 58,072 (50.1) 27,872 (45.4)

 Women 185,581 (54.7) 32,733 (49.5) 32,129 (51.1) 26,564 (54.9) 69,976 (52.9) 115,605 (55.9) 57,843 (49.9) 33,583 (54.6)

Body mass 
index, kg/m2

27.2 (4.6) 27.6 (4.7) 27.1 (4.4) 26.5 (4.5) 27.6 (4.7) 26.9 (4.5) 27.4 (4.6) 26.6 (4.5)

Smoking status, %

 Never 190,497 (56.1) 37,780 (57.2) 37,609 (59.8) 28,701 (59.3) 73,025 (55.2) 117,472 (56.6) 67,313 (58.1) 36,744 (59.8)

 Previous 117,680 (34.7) 21,122 (32.0) 19,636 (31.2) 14,791 (30.6) 46,401 (35.1) 71,279 (34.4) 36,849 (31.7) 18,700 (30.4)

 Current 31,411 (9.2) 7,170 (10.8) 5,672 (9.0) 4,889 (10.1) 12,785 (9.7) 18,626 (9.0) 11,753 (10.1) 5,978 (9.7)

Townsend 
Deprivation 
Index

-1.7 (2.8) -2.1 (2.6) -1.9 (2.6) -0.7 (3.1) -2.1 (2.6) -1.4 (3.0) -2.0 (2.6) -0.9 (3.1)

Alcohol Consumption Status

 Never 9,804 (2.9) 1,291 (1.9) 1,225 (2.0) 1,101 (2.3) 3,538 (2.7) 6,266 (3.0) 2,242 (1.9) 1,351 (2.2)

 Previous 10,235 (3.0) 1,513 (2.3) 1,275 (2.0) 1,377 (2.8) 3,691 (2.8) 6,544 (3.2) 2,506 (2.2) 1,659 (2.7)

 (<3times 
per week)

162,083 (47.7) 33,170 (50.2) 31,464 (50.0) 23,573 (48.7) 63,348 (47.9) 98,735 (47.6) 58,151 (50.2) 30,056 (48.9)

 Cur-
rent (more 
than 3times 
per week)

157,466 (46.4) 30,098 (45.6) 28,953 (46.0) 22,330 (46.2) 61,634 (46.6) 95,832 (46.2) 53,016 (45.7) 28,365 (46.2)

Salt-adding behaviour

 Never/rarely 194,530 (57.3) 36,367 (55.1) 36,714 (58.4) 29,075 (60.1) 72,711 (55.0) 121,819 (58.7) 65,414 (56.4) 36,742 (59.8)

 Sometimes 93,933 (27.7) 18,916 (28.6) 17,573 (28.0) 13,242 (27.4) 37,316 (28.2) 56,617 (27.3) 32,874 (28.4) 16,857 (27.4)

 Usually 37,591 (11.0) 7,660 (11.6) 6,519 (10.3) 4,546 (9.4) 16,005 (12.1) 21,586 (10.4) 12,817 (11.1) 5,908 (9.6)

 Always 13,534 (4.0) 3,129 (4.7) 2,111 (3.3) 1,518 (3.1) 6,179 (4.7) 7,355 (3.6) 4,810 (4.1) 1,948 (3.2)

Oily fish consumption

 Never 34,684 (10.2) 8,425 (12.7) 7,192 (11.4) 5,755 (11.9) 14,217 (10.8) 20,467 (9.9) 14,135 (12.2) 7,237 (11.8)

 < Once 
per week

113,837 (33.5) 25,580 (38.7) 23,424 (37.3) 16,915 (35.0) 47,911 (36.1) 66,144 (31.9) 43,736 (37.7) 22,180 (36.1)

 Once 
per week

131,321 (38.7) 23,105 (35.0) 22,185 (36.8) 17,840 (36.8) 49,719 (37.6) 81,602 (39.3) 41,661 (36.0) 22,469 (36.5)

 > Once 
per week

59,746 (17.6) 8,962 (13.6) 9,116 (14.5) 7,871 (16.3) 20,582 (15.6) 39,164 (18.9) 16,383 (14.1) 9,566 (15.6)

Coffee intake 
(cups per day)

2.1 (2.0) 2.2 (2.3) 2.1 (2.1) 2.0 (2.0) 2.1 (2.1) 2.0 (2.0) 2.2 (2.2) 2.1 (2.0)

Fruit and veg-
etable intake 
(score ranging 
from 0-4 based 
on fresh/dried 
fruit intake and 
raw/cooked 
vegetable 
intake)

1.6 (1.1) 1.4 (1.1) 1.5 (1.1) 1.6 (1.2) 1.5 (1.1) 1.7 (1.2) 1.5 (1.1) 1.6 (1.1)

Red meat 
intake, days/
week (average)

0.9 (0.5) 0.9 (0.5) 0.9 (0.5) 0.8 (0.5) 0.9 (0.5) 0.9 (0.5) 0.9 (0.5) 0.8 (0.5)

Hypertension 
medication 
use, %

62,882 (18.5) 8,764 (13.3) 7,456 (11.9) 5,350 (11.1) 24,073 (18.2) 38,809 (18.7) 14,835 (12.8) 6,735 (10.9)
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Figure  3 summarises the joint associations of trans-
port modes and categories of genetic susceptibility 
with incident CHD. For overall transport, exclusive 
use of cars in combination with low (HR:1.21, 95% CI: 
1.03-1.41), medium (HR:1.84, 95% CI: 1.58-2.13) and 
high genetic risk (HR: 2.82, 95% CI: 2.45-3.25) of CHD 
was associated with relatively higher hazards of CHD, 
compared with using alternatives to the car (Supple-
mental Table  9); however, there was no multiplicative 
interaction between transport mode and genetic sus-
ceptibility (p-value=0.475) while there was evidence of 
additive interaction (p-value=0.045). Similar patterns 
of associations were observed for non-commuting and 
commuting, with generally higher hazards of CHD for 
exclusive use of cars combined with each level of genetic 
risk. While there was evidence of additive interaction 
(p-value = 0.003) for non-commuting, no evidence was 
observed for multiplicative interaction (p-value = 0.427) 
for non-commuting, and for both multiplicative (p-value 
= 0.280) and additive interactions (p-value = 0.067) for 
commuting.

Figure  4 shows estimates of 10-year absolute risk of 
CHD adjusted for age, sex, and genotyping array type 
and the first ten principal components of genetic ances-
try. Participants who used alternatives to the car had 
lower 10-year absolute CHD risk compared with those 
who used cars exclusively within each level of genetic 
susceptibility.

Discussion
This study is the first to investigate the interplay of dif-
ferent modes of transport and genetic susceptibility to 
CHD for incident CHD. Our results found that, irrespec-
tive of genetic susceptibility to CHD, exclusively using 
cars for any travel purpose was associated with a higher 
risk of CHD compared with using alternatives to the car. 
Notably, risk of CHD was, in general, lower (albeit wide 
and overlapping 95%CIs in some comparisons) for use 
of alternatives to the car than for exclusive use of cars in 
the full-sample analysis adjusted for genetic risk of CHD, 
and in analyses stratified by genetic risk. These findings 
shed new light on the potential role of active transport in 

Note: Values are means (standard deviations) or percentages, unless otherwise indicated

Table 1 (continued)

Variables All 
(N=339,588)

Overall transport (N=177,370) Non-commuting transport 
(N=339,588)

Commuting transport 
(N=177,370)

Exclusive 
use of cars 
(N=66,072)

Mixed 
transport 
(N=62,917)

Alternatives 
to the car (N= 
48,381)

Exclusive use 
of cars (N= 
132,211)

Alternatives 
to the car (N= 
207,377)

Exclusive use 
of cars (N= 
115,915)

Alternatives 
to the car (N= 
61,455)

Cholesterol-
lowering 
medication 
use, %

49,159 (14.5) 6,224 (9.4) 5,127 (8.2) 3,697 (7.6) 18,908 (14.3) 30,251 (14.6) 10,369 (9.0) 4,679 (7.6)

TV-viewing, 
hours/day

2.7 (1.5) 2.5 (1.3) 2.4 (1.3) 2.2 (1.4) 2.8 (1.5) 2.7 (1.6) 2.5 (1.3) 2.2 (1.4)

Computer use, 
hours/day

1.0 (1.3) 1.1 (1.4) 1.0 (1.2) 1.0 (1.3) 1.1 (1.3) 1.0 (1.2) 1.0 (1.3) 1.0 (1.3)

Sleep, hours/
day

7.2 (1.0) 7.0 (0.9) 7.1 (0.9) 7.0 (0.9) 7.2 (1.0) 7.2 (1.0) 7.0 (0.9) 7.0 (0.9)

total walk for 
pleasure (min-
utes per day)

15.5 (23.1) 9.3 (15.5) 14.0 (20.2) 13.0 (19.4) 11.2 (18.6) 18.2 (25.2) 11.9 (18.4) 12.2 (18.6)

total light DIY 
(minutes per 
day)

10.8 (25.3) 8.3 (21.2) 9.7 (22.5) 7.5 (17.3) 10.0 (24.7) 11.3 (25.6) 9.1 (22.3) 7.5 (17.4)

total heavy DIY 
(minutes per 
day)

6.9 (20.5) 6.8 (22.0) 6.8 (20.1) 4.7 (14.1) 7.2 (21.9) 6.8 (19.5) 7.0 (21.6) 4.7 (14.3)

total strenuous 
sports (min-
utes per day)

2.4 (10.0) 2.7 (9.7) 3.0 (10.3) 3.3 (11.5) 2.4 (9.6) 2.4 (10.2) 2.8 (10.0) 3.3 (11.2)

total other 
exercises (min-
utes per day)

9.6 (17.6) 8.3 (15.0) 9.0 (15.4) 10.7 (18.2) 9.1 (16.8) 10.0 (18.1) 8.7 (15.3) 10.3 (17.6)

Polygenic risk 
scores for CHD

17.3 (0.6) 17.3 (0.6) 17.3 (0.6) 17.3 (0.6) 17.3 (0.6) 17.3 (0.6) 17.3 (0.6) 17.3 (0.6)
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prevention of cardiovascular events, and the importance 
of promoting more active transport for all individuals, 
including those whose genetic risk of CHD is high. As 
such, there will be a substantial public health benefit of 
shifting to more active modes of transport, particularly in 
individuals who have higher genetic risk of CHD.

Previous research has reported on the interplay of 
healthy lifestyle behaviours including high physical 
activity and fitness, and less screen-based sedentary 
time [2, 16, 17, 32] and genetic risk for CHD. To the 
best of our knowledge, however, no previous research 
[9, 33, 34] took into account genetic susceptibility in 
exploring the associations of transport mode with CHD 
and other common chronic disease outcomes, thereby 
making it challenging to make a fair comparison. 
However, we found no strong evidence of multiplica-
tive and additive interaction (except overall and non-
commuting transport) between genetic risk and modes 
of travel for any transport purpose with CHD risk. In 
general, this is consistent with previous studies show-
ing no strong evidence of interaction between genetic 
risk and lifestyle-related traits for CHD risk [16, 18, 
35, 36]. This observation suggests that using alterna-
tives to the car could benefit the entire population such 
that individuals at high genetic risk as well as those at 

low genetic risk would have a lower risk of develop-
ing CHD through the use of a more active transport 
mode. These findings support the current public health 
guidelines [6] that adults can use more physically active 
travel options as a way of undertaking daily-life physi-
cal activity in the context of transportation. Moreover, 
our study informs public health interventions custom-
ised to individuals at high genetic risk of CHD aiming 
to prevent or delay the onset of cardiovascular events 
through lifestyle modification [37, 38]. Such precision 
medicine approaches [39, 40] have the potential to 
serve as key cardiovascular disease prevention strate-
gies supplemental to public health policies, and societal 
and community-based interventions promoting active 
transport [41].

An advantage of this study is the large number of par-
ticipants (n=333,426) as well as incident CHD cases 
(n=13,730) accrued over a relatively long period of fol-
low-up (a median 13.8 years), which ensured sufficient 
statistical power for the analyses performed. In addition, 
we removed the first 2 years of CHD follow-up to reduce 
the likelihood of reverse causation in the main analysis, 
with an additional 2 years of follow-up removed in one of 
the sensitivity analyses. Furthermore, we explored addi-
tive interaction as well as multiplicative interaction to 

Table 2 Associations of mode of transport and genetic susceptibility with incident coronary heart disease (CHD)

Notes:

Model  1a: adjusted for age (underlying timescale)

Model  1b: adjusted for age (underlying timescale), sex, genotyping array type and the first ten principal components of genetic ancestry

Model 2: adjusted for age (underlying timescale), sex, body mass index, smoking (never, previous, current), alcohol intake (never, previous, currently <3 times/week, 
currently ≥3 times/week), salt intake (never/rarely, sometimes, usually, always), oily fish intake (never, <once per week, once per week, >once per week), coffee intake 
(cups per day), fruit and vegetable intake (a composite score based on fresh/dried fruit intake and raw/cooked vegetable intake), processed/red meat intake (days 
per week), Townsend Deprivation Index (an indicator of area-based socioeconomic status), sleep (≤5, 6, 7, 8 and ≥9hours per day), total leisure-time physical activity 
(minutes per day; based on walking, non-walking moderate physical activity and non-walking vigorous physical activity), blood-pressure-lowering medication use, 
cholesterol-lowering medication use, polygenic risk scores, genotyping array type and the first ten principal components of genetic ancestry

Comparison Number of 
participants

Number of cases Crude incident rate per 
100,000-person years

Hazard ratio of CHD (95% 
confidence interval)

Model 1 Model 2

Overall transport (N=177,370)
 Alternatives to the car (Reference) 48,381 1,218 183.5 1.00 (Reference)a 1.00 (Reference)

 Mixed transport mode 62,917 1,915 221.4 1.19 (1.11, 1.28) 1.11 (1.03, 1.19)

 Exclusive use of cars 66,072 2,322 255.9 1.35 (1.26, 1.45) 1.16 (1.08, 1.25)

Non-commuting transport (N=339,588)
 Alternatives to the car (Reference) 207,377 8,170 289.1 1.00 (Reference)a 1.00 (Reference)

 Exclusive use of cars 132,211 5,560 307.9 1.15 (1.12, 1.19) 1.08 (1.04, 1.12)

Commuting transport (N=177,370)
 Alternatives to the car (Reference) 61,455 1,537 182.2 1.00 (Reference)a 1.00 (Reference)

 Exclusive use of cars 115,915 3,918 246.1 1.31 (1.23, 1.39) 1.16 (1.09, 1.23)

Tertiles of genetic risk (N=339,588)
 Low (Reference) 113,105 3,118 201.0 1.00 (Reference)b -

 Medium 113,22 4,478 289.8 1.45 (1.38, 1.52) -

 High 113,261 6,134 399.5 2.04 (1.95, 2.12) -
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Fig. 2 Cumulative hazard of coronary heart disease (CHD) for each category of transport mode and genetic risk across age ranges. Notes: 
Cumulative hazard of coronary heart disease for transport modes was adjusted for age (underlying timescale), sex, body mass index, smoking 
(never, previous, current), alcohol intake (never, previous, currently <3 times/week, currently ≥3 times/week), salt intake (never/rarely, sometimes, 
usually, always), oily fish intake (never, <once per week, once per week, >once per week), coffee intake (cups per day), fruit and vegetable intake 
(a composite score based on fresh/dried fruit intake and raw/cooked vegetable intake), processed/red meat intake (days per week), Townsend 
Deprivation Index (a measurement of area-based socioeconomic status), sleep (≤5, 6, 7, 8 and ≥9hours per day), total leisure-time physical activity 
(min per day; based on walking, moderate physical activity and vigorous physical activity), antihypertensive medication use, anticholesterolemic 
medication use, antidiabetic medication use, genotyping array type and the first ten principal components of genetic ancestry. Cumulative 
hazard of coronary heart disease for genetic risk was adjusted for age (underlying timescale), sex, genotyping array type and the first ten principal 
components

Fig. 3 Joint associations of categories of transport modes and genetic susceptibility with incident coronary heart disease. Hazard ratios of coronary 
heart disease along with the corresponding 95% confidence intervals were presented. Model was adjusted for age (underlying timescale), sex, 
body mass index, smoking (never, previous, current), alcohol intake (never, previous, currently <3 times/week, currently ≥3 times/week), salt 
intake (never/rarely, sometimes, usually, always), oily fish intake (never, <once per week, once per week, >once per week), coffee intake (cups 
per day), fruit and vegetable intake (a composite score based on fresh/dried fruit intake and raw/cooked vegetable intake), processed/red meat 
intake (days per week), Townsend Deprivation Index (an indicator of area-based socioeconomic status), sleep (≤5, 6, 7, 8 and ≥9hours per day), 
total leisure-time physical activity (minutes per day; based on walking, non-walking moderate physical activity and non-walking vigorous physical 
activity), blood-pressure-lowering medication use, cholesterol-lowering medication use, glucose-lowering medication use, genotyping array 
type and the first ten principal components of genetic ancestry. For overall transport, p-value for multiplicative interaction=0.475; and p-value 
for additive interaction=0.045. For non-commuting, p-value for multiplicative interaction=0.427; and p-value for additive interaction=0.003. 
For commuting, p-value for multiplicative interaction=0.280; and p-value for additive interaction=0.067

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig. 4 10-year absolute risk of coronary heart disease (CHD) for each category of transport mode across strata of genetic susceptibility to CHD. 
Note: Models were adjusted for age (underlying timescale), gender, genotyping array type and the first ten principal components of genetic 
ancestry. The 95% confidence intervals were shown in the form of error bars
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better address the potential biological interactions and 
public health relevance [42, 43].

This study also has some limitations worth noting. First, 
causal inference is challenging since this is an observa-
tional study. Moreover, our analyses only included white 
British individuals, and,  therefore, lack generalisability 
towards individuals of non-European ancestry as well as 
those living in other contexts where use of alternatives 
to the car might be more common. In addition, we did 
not use information on the duration and/or distance of 
transport, and hence the present results do not provide 
quantified exposure information of relevance to dose-
response relationships of transport mode with risk of 
CHD. Furthermore, participants were allowed to choose 
more than one mode of transport among the four pos-
sible options (e.g., cars, walking, cycling and public trans-
port) for both non-commuting and commuting, and a 
substantially large proportion of individuals reported 
using more than one mode of transport for non-com-
muting (e.g., approximately 49%) and commuting (e.g., 
approximately 20%), thereby resulting in small numbers 
of CHD incidence cases in the PRS-stratified analyses 
(Supplemental Table 10). Therefore, it was not feasible to 
generate and use multiple mutually exclusive categories 
of transport modes (e.g., car users, active travellers [bike/
cycling] and public transport users) in the same analysis. 
Moreover, recall bias may be present in the assessment 
of transport modes due to the use of questionnaires to 
assess this exposure; however, modes of transport for a 
person are likely to be similar across days and months, so 
would be easier to recall than more sporadic activities. 
Similarly, confounding from unmeasured covariates and 
residual confounding from poorly measured covariates 
may also be present in our analyses.

Conclusion
The exclusive use of cars was, in general, predictive of 
subsequent CHD, irrespective of genetic susceptibility to 
CHD. All individuals, including those at high genetic risk, 
using alternatives to the car had a relatively lower risk of 
developing CHD compared with those using cars exclu-
sively. Encouraging more active patterns of travel should 
be a key lifestyle behavioural goal for everyone including 
individuals whose genetic risk of CHD is high, and policy 
makers across both health and transport sectors should 
work together to create physical and policy environments 
that facilitate such healthy choices.
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