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Abstract
Background Inference using standard linear regression models (LMs) relies on assumptions that are rarely satisfied in 
practice. Substantial departures, if not addressed, have serious impacts on any inference and conclusions; potentially 
rendering them invalid and misleading. Count, bounded and skewed outcomes, common in physical activity 
research, can substantially violate LM assumptions. A common approach to handle these is to transform the outcome 
and apply a LM. However, a transformation may not suffice.

Methods In this paper, we introduce the generalized linear model (GLM), a generalization of the LM, as an approach 
for the appropriate modelling of count and non-normally distributed (i.e., bounded and skewed) outcomes. Using 
data from a study of physical activity among older adults, we demonstrate appropriate methods to analyse count, 
bounded and skewed outcomes.

Results We show how fitting an LM when inappropriate, especially for the type of outcomes commonly encountered 
in physical activity research, substantially impacts the analysis, inference, and conclusions compared to a GLM.

Conclusions GLMs which more appropriately model non-normally distributed response variables should be 
considered as more suitable approaches for managing count, bounded and skewed outcomes rather than simply 
relying on transformations. We recommend that physical activity researchers add the GLM to their statistical toolboxes 
and become aware of situations when GLMs are a better method than traditional approaches for modeling count, 
bounded and skewed outcomes.
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Background
In the field of physical activity, outcome (or response) 
variables are often bounded (typically, taking only non-
negative values) and positively skewed [1–3]. For exam-
ple, studies examining minutes of leisure time physical 
activity in the past week (i.e., a non-negative variable) 
could include a substantial number of people reporting 
less than 30 weekly minutes of this specific physical activ-
ity domain, few reporting 30 to 59 min, and even fewer 
reporting at least 60 min (i.e., a skewed distribution).

Physical activity is challenging to measure accurately. 
Data on physical activity have been collected in a variety 
of ways including self-report questionnaires, such as the 
International Physical Activity Questionnaire (IPAQ) [4], 
and objective measurements, such as accelerometers [5], 
pedometers [6] and combinations of heart rate monitors 
and movement sensors [7]. These methods allow estima-
tion of a diverse range of physical activity outcomes, such 
as the number of days during which participants engaged 
in walking for transport in the last or usual week [8, 9], 
daily or weekly minutes spent in moderate-to-vigorous 
physical activity (MVPA) [10], average number of daily 
steps [11] or mean accelerometer counts per minute 
[12]. Non-normally distributed outcomes are prevalent 
in cross-sectional [10, 13], longitudinal [1, 2] and inter-
vention studies [3, 14] of physical activity. Often, physical 
activity researchers are interested in examining asso-
ciations of socio-demographic characteristics, such as 
gender, age, education [15], or environmental [10] and 
psychosocial factors [16] with physical activity outcomes. 
Many researchers apply linear regression models (LMs) 
or related (e.g., analysis of variance (ANOVA)) methods 
[17–22]. However, these methods rely on assumptions 
about the underlying distribution of the data (e.g., model 
residuals are assumed to be normally distributed) which 
may not be appropriate when modelling physical activity 
outcomes.

If skewed and bounded physical activity outcomes are 
not modelled appropriately there may be issues with the 
validity of interpretations and conclusions. If the out-
come is a count (non-negative integer [i.e., 0, 1, 2, …]), 
LMs are likely to be inappropriate because these models 
will generate non-integer predicted values and may gen-
erate negative predicted values – which are impossible – 
as LMs assume the outcome can take any real number. 
For example, assuming few individuals are active every 
day, the number of days per week of vigorous physical 
activity (a discrete variable), could be modelled as count 
data. Continuous bounded and skewed data in physical 
activity research include minutes of leisure-time physical 
activity or accelerometer-based MVPA per week. These 
are bounded as there are lower (i.e., 0  min) and upper 
limits (i.e., 10,080  min corresponding to the maximum 
possible minutes of PA per week) for minutes of the week 

and distributions are often skewed. These outcomes can 
be modelled using readily available bounded and skewed 
distributions.

In practice, when handling count, bounded and skewed 
outcomes several different approaches have been used. 
These include ignoring the distributional issues and con-
ducting the analyses on the original outcome, applying 
some type of transformation (for example the Box-Cox 
transformation [23]) to obtain an approximately normally 
distributed outcome variable, or applying regression 
models that are appropriate for the type of outcome (for 
example GLMs) [24, 25]. However, deciding what is the 
best approach, or what is “good enough”, can be tricky. 
The aim of this paper is to discuss regression-based 
approaches for dealing with count, bounded and skewed 
outcome data and to demonstrate the use of these meth-
ods as applied to the Active Lifestyle and Environment 
in Chinese Seniors (ALECS) study of Hong Kong older 
adults that collected discrete as well as continuous physi-
cal activity data [26, 27]. The focus of this article is on 
physical activity as the outcome variable.

Methods
In the following sub-sections, we discuss the various 
analytical approaches that deal with count, bounded 
and skewed continuous outcome data. These approaches 
employ more appropriate probability models to handle 
count, bounded and skewed outcomes, rather than try-
ing to make things fit into the usual (and inappropriate) 
normal-based LMs.

Count data
As mentioned previously, physical activity data are often 
discrete (i.e., can take a finite or countable number of 
possible values); count data are a special case taking non-
negative integers (i.e., 0, 1, 2, …). For example, the self-
reported number of days per week a person engages in 
at least 20  min of vigorous physical activity is discrete, 
taking the values 0 to 7. However, this variable could be 
considered as a count if the outcome is skewed towards 
lower values (meaning a count model is unlikely to gen-
erate invalid values greater than the upper bound of 7). 
GLMs, such as the Poisson regression model or one of its 
variants (e.g., negative binomial regression), are appro-
priate and well-suited to modelling count data [28]; 
providing valid inference for such variables in terms of 
estimates, p-values and confidence intervals (CIs).

Poisson regression model
The simplest distribution commonly used for modelling 
count data is the Poisson distribution. A Poisson regres-
sion model is similar to a LM, with two exceptions. 
Firstly, it assumes that the response follows a Poisson dis-
tribution. Secondly, rather than modelling the expected 
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value of the response as a linear function of the regres-
sion coefficients, it includes a link function that relates 
the expected value of the response to the linear func-
tion of the coefficients, where the link function in Pois-
son regression is the natural logarithm (see [28, 29] for 
details).

The Poisson model is useful for describing the mean 
of an outcome variable (conditional on values of the 
covariates) and assumes that the mean and variance are 
equal. Although Poisson regression is fundamental to 
the regression analysis of count data, it is often of lim-
ited utility for real data due to the assumption that the 
mean and variance of the outcome distribution are equal. 
In many practical applications, count data exhibit far 
greater variability than is predicted by the Poisson distri-
bution, a phenomenon known as over-dispersion (i.e., the 
variance is larger than mean). Although under-dispersion 
(i.e., the variance is smaller than the mean) is also pos-
sible, it is far less common. Neglecting over-dispersion in 
regression models for count data results in the standard 
errors of the parameter estimates being underestimated 
which consequently affects the CIs and p-values. Thus, 
accounting for over-dispersion when modelling count 
data is essential. Failing to deal with these features of the 
data can lead to biased standard errors of parameter esti-
mates and, thus, invalid conclusions.

Quasi-Poisson and negative binomial regression models
To deal with over-dispersion, there are two common 
extensions of the Poisson model. The first is a quasi-Pois-
son model that includes an extra parameter which esti-
mates how much larger the variance is than the mean. 
This parameter estimate (also known as the dispersion 
parameter) is then used to correct for the effects of the 
larger variance on the standard errors, CIs and p-val-
ues. Note that quasi-Poisson GLMs reduce to Poisson 
GLMs when this dispersion parameter is equal to one. 
The second is a negative binomial model. Like Pois-
son regression, negative binomial regression is suit-
able for modelling count outcome data but is more 
flexible as it has an additional parameter to account for 
over-dispersion.

A natural question for researchers in the physical activ-
ity field is: which model should be used in the presence of 
over-dispersion? There is no general recommendation as 
to which of the two options is best, making it difficult to 
specify a priori which of the quasi-Poisson and negative 
binomial models are most suitable. However, in practice, 
there is typically no great difference when comparing 
these models [30]. Therefore, either approach should be 
suitable if over-dispersion is of concern, although the best 
fitting model can be chosen by fitting both regression 
models and comparing the models using an information 

criterion value, such as the Akaike Information Criterion 
(AIC).

Example 1
We illustrate the LM, GLM-Poisson, GLM-quasi-Pois-
son, and GLM-Negative Binomial described above by 
applying them to data from ALECS study, using the 
weekly minutes of self-reported physical activity (in a 
usual week) among 402 adults (62 years and older, mean 
(sd) age 75.6 (6.2) years; 69% female) from Hong Kong. 
In this example, the outcome variable is the self-reported 
habitual physical activity (PA) expressed as weekly min-
utes, and the number of chronic medical conditions 
(NCMC) is the exposure of interest. We note that weekly 
minutes is strictly a discrete outcome. However, we can 
safely treat it as a count outcome as we are unlikely to be 
affected by the upper bound described earlier. All models 
adjust for age and sex, characteristics commonly prog-
nostic of PA.

Bounded and skewed continuous data
The LM approach is appropriate for continuous normally 
distributed data. For non-normally distributed continu-
ous data, LMs may still be appropriate in studies with a 
large sample size [31] where we are more interested in 
the mean outcome rather than accurate and powerful 
methods of inference. However, there are many other 
pitfalls that may affect the quality of the interpretation 
and conclusions drawn from poorly fitted models [32]. 
Moreover, variables that take zero as a minimum value 
(such as minutes of leisure time PA in the past week), 
namely bounded outcomes, can prove problematic to 
model using LMs as this approach assumes that the out-
come variable can take both negative and positive values. 
Therefore, there is a potential for predicted values from 
a LM to take impossible values. Alternate approaches, 
such as the analysis of data on a transformed scale that 
yields an approximately normal distribution, may provide 
a better representation of the way in which the outcome 
variable takes on values. Furthermore, models that are 
specifically designed to take skewness into account often 
perform much better than LMs using transformations. 
In this section we aim to provide appropriate alterna-
tive modelling strategies for skewed bounded continuous 
data.

Transformation bias and impact on interpretation
When the distribution of a continuous outcome is non-
normal, transformations (e.g., Box-Cox transformation 
[23]) of data can be applied to make data as normal as 
possible. The log transformation is, arguably, the most 
popular among the different types of transformations due 
to its ease of use and interpretability. Another commonly 
chosen transformation is the square root of the outcome. 
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This is sometimes used by researchers instead of the log 
transformation when the outcome can take values of 
zero; since the log of zero is undefined. However, there is 
no guarantee that the transformation chosen will reduce 
skewness and make the data a better approximation of 
the normal distribution. In fact, in some cases apply-
ing the transformation can make the distribution more 
skewed than the original data [33]. Moreover, data trans-
formations are somewhat unsatisfactory as the resulting 
models no longer pertain directly to the original scale of 
measurement, which is usually of greatest interest [34]. 
Transformations try to force a model framework and dis-
tributional assumption that may not be best for the data. 
For example, the back-transformation of square root 
transformed outcome or natural log outcomes can make 
the interpretation of findings challenging [35]. Further-
more, statistically significant differences on the trans-
formed scale are uninformative as to whether significant 
differences exist on the original untransformed scale and 
vice versa [36].

A key issue with the use of transformations is that 
transformations can induce a transformation bias. The 
predictions of the true population mean will be biased 
(over or under estimated) because the regression mod-
els the transformed outcome (i.e., E [log (y)] = α + xβ
) rather than the transformed expected value (i.e., 
log [E (y)] = α + xβ ) [37]. For example, the mean of the 
log-transformed observations, E [log (y)] , is often used 
to estimate the population mean of the original data by 
applying the anti-log (i.e., exponential) function to obtain 
exp [E [log (y)]]. However, this inversion of the mean log 
value does not usually result in an appropriate estimate 
of the mean of the original data. Many researchers tend 
to interpret exp [E [log (y)]] as the mean of y. However, 
exp [E [log (y)]] and E (y) are quite different quantities 
(see [33] for details).

Interpreting regression coefficients typically involves 
determining what change in the dependent variable is 
suggested by a given change in each independent vari-
able. However, we cannot back transform coefficient esti-
mates or interval estimates of coefficients of transformed 
outcomes, for example the LM of the square-root trans-
formed outcome (sqrt-LM), because the simple back 
(reverse) transformation does not necessarily map back 
onto the original (untransformed) effect of interest [37, 
38]. In fact, the interpretation of the regression coeffi-
cient from sqrt-LM is much more complex, as described 

by Huber [39]. The regression coefficients, bi , from sqrt-
LM indicate that a one unit change in exposure (Xi ) is 
associated with a 2bi

√
Y  change in the outcome.

Gamma and inverse gaussian regression
The binomial (for binary outcomes), Poisson (count 
outcomes) and Gaussian (normal outcomes) GLMs are 
commonly used, but there are other GLMs for other par-
ticular types of outcome [28]. For example, the gamma 
and inverse Gaussian are intended for positive, continu-
ous, skewed responses. Many applications have response 
variables which are continuous and positive (such as 
minutes of leisure time PA in the past week).

A gamma GLM is appropriate in situations where the 
variance increases linearly with the mean response [40]. 
The practical uses of gamma have been discussed in de 
Jong and Heller [41], Frees [42] and Venables and Ripley 
[43].

The inverse Gaussian distribution, similar to that of the 
gamma, with a high initial peak, rapid drop-off and long 
right tail, has been found to be an appropriate reflection 
of right skewed positive data, such as insurance claims 
and length of hospital stay [44]. The inverse Gaussian 
regression is also suitable for data that are continuous, 
non-negative, and right skewed. The variance function 
for the inverse Gaussian GLM increases more rapidly 
with the mean (variance = mean3) than the gamma GLM 
(variance = mean2), making it suitable for data where this 
occurs (see [28] and [40] for details).

Example 2
We illustrate the regression models for skewed continu-
ous data described above by applying them to data from 
the ALECS study, using daily average minutes (i.e., a con-
tinuous outcome) of MVPA (mean = 25.7; sd = 23.3) as 
our outcome and same covariates as used in Example 1, 
i.e., age, sex and NCMC.

Results
The descriptive measures of the variables used in this 
study are presented in Table  1. The assumption that 
the variance is equal to the mean (required for Poisson 
regression) may not be valid for the PA outcome (third 
row) and Fig.  1 clearly indicates that the outcome is 
skewed.

Table 1 Descriptive statistics for selected variables from the ALECS study of physical activity in Hong Kong older adults (N = 402)
Variable Minimum Q1 Median Q3 Maximum Mean Variance
Age (years) 62.9 70.8 75.2 80.0 97.9 75.6 37.8

NCMC 0 2 3 5 10 3.1 4.1

PA (min/week) 0 200 390 670 4074 537.4 322,650
PA: Physical activity; NCMC: Number of chronic medical conditions; Q1: first quartile; Q3: third quartile
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LM vs. regression models for count data – results of 
example 1
The LM and different regression models for count data 
fitted to the PA outcome are presented in Table  2. The 
results are very similar (in terms of statistical signifi-
cance) for all models, except for the Poisson regression 
model, indicating both age and NCMC are not associated 
with PA. In contrast, the Poisson regression indicates a 
significant association between both age and NCMC 
with PA. From Table  2, it can also be noticed that the 
estimated coefficients are very similar across the mod-
els, except for the LM. This is because the LM produces 
estimates on the original measurement unit of the out-
come variable (weekly minutes of PA) rather than on a 
link (i.e., natural logarithmic) scale as the GLMs consid-
ered do (the interpretation of the coefficients is explained 
later in the paper). However, the standard errors (and 
95% CI) differ. For example, if we consider the exposure 
variable NCMC, we can see that the standard error from 
the Poisson regression model is much smaller than those 
of the other GLMs, indicating possible over-dispersion 
which we anticipated would be present from examina-
tion of the descriptive statistics since the variance of the 
PA outcome was much larger than the mean (Table  1). 
In Poisson regression, over-dispersion will result in an 
underestimation of the standard errors of the estimated 
regression coefficients because these errors reflect only 
the variation expected from a Poisson distribution.

To identify the best fitting model, the AIC [24] value 
can be used to compare the models. The preferred model 

is the one with the minimum AIC value, although the 
appropriateness of the model for the outcome under 
consideration must also be taken into account. Though 
an inspection of p-values suggests that the conclusions 
from various models presented in Table  2 seem very 
similar (except those based on the Poisson regression), 
a comparison of the AIC values of these models reveals 
that the quasi-Poisson and negative binomial regression 
models are superior to both the Poisson regression and 
the LM; the negative binomial performs the best with the 
lowest AIC. As mentioned, the Poisson regression is infe-
rior because there is substantial over-dispersion in the 
Poisson regression model and, consequently, the stan-
dard errors of the Poisson regression are underestimated. 
Tests to assess over-dispersion can be conducted. The 
dispersion parameter was assessed for both the quasi-
Poisson regression and negative binomial regression (see 
DP in Table 2). The estimate of the dispersion parameter 
from the quasi-Poisson regression was greater than one 
(p < 0.001), while an estimate greater than zero (p < 0.001) 
was obtained for the negative binomial regression [25, 
46]. Note that the LM appears superior to the Poisson 
regression based on the AIC. However, the LM is a poor 
choice as it is inappropriate for modelling count data. 
Therefore, it is important to be aware that the AIC alone 
is not sufficient for selecting an appropriate model. Spe-
cifically, there are important aspects of the model check-
ing that AIC would miss.

Fig. 1 Distribution of weekly minutes of habitual physical activity from the ALECS study of physical activity in Hong Kong older adults (n = 402)
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Interpreting GLMs (compared to LMs)
The GLMs above produce coefficient estimates on a 
natural logarithmic scale. Taking the exponential of the 
coefficients for Poisson and negative binomial regres-
sion models provides incidence rate ratios (IRRs), which 
indicate the proportional difference in outcome associ-
ated with a unit difference in exposure variable. IRRs 
of 1 indicate no difference in the outcome by exposure; 
IRRs greater than 1 indicate that the outcome increases 
as the exposure increases and IRRs less than 1 indicate 
a decrease in outcome as the exposure increases. For 
example, consider the coefficient of NCMC in the Pois-
son regression model. To obtain the IRR, the coefficient 
should be exponentiated, 0.963 

(
e−0.038

)
. As the IRR 

is below 1, this suggests that the outcome decreases for 
each unit increase in the NCMC (i.e., for each additional 
NCMC). A more meaningful way of expressing this is to 
present the percentage decrease in the outcome for each 
additional NCMC; estimated to be 3.7% for this coef-
ficient 

(
(1 − e−0.038

)
× 100 = 3.7%). In other words, PA 

decreases by 3.7% with each additional NCMC. Impor-
tantly, the IRR should be interpreted along with the 95% 
CI. The 95% CI for the NCMC coefficient ranges from 
− 0.041 to -0.036 which exponentiated results in a 95% 

CI of 0.960 to 0.965 for the IRR. This suggests a decrease 
in PA ranging from 3.5% (

(
1 − e−0.036

)
× 100)  to 4.0% 

(
(
1 − e−0.041

)
× 100)  with each additional NCMC. The 

interpretation of coefficients for the negative binomial 
and quasi-Poisson regression models were consistent 
with the Poisson regression model. However, the expo-
nentiated 95% CIs contain 1 for each of these models 
meaning it is possible that there is no change in PA with 
each additional NCMC. Since we found over-dispersion 
in the data, the results from either the quasi-Poisson or 
negative binomial regression are more appropriate (i.e., 
there is insufficient evidence that age and NCMC are 
associated with PA). Note that it is common to present 
the IRR and corresponding 95% CI for the IRR in results 
tables for these GLMs rather than the coefficients in the 
log scale as shown in Table 2.

LM vs. regression models for continuous positively-skewed 
data – results of example 2
Figure 2 shows the distributions of the original, untrans-
formed MVPA data as well as the transformed data 
(employing the commonly used log and square root 
transformations). Whilst we can clearly see that daily 
average minutes of MVPA are, as expected, positively 

Table 2 Estimated associations between PA and NCMC adjusted for age and sex from the ALECS study of physical activity in Hong 
Kong older adults using various regression models (N = 402)

LM GLM-Poisson GLM-quasi-Poisson GLM-Negative 
Binomial

Intercept
Estimate 875.5 6.918 6.918 7.021

SE 349.1 0.027 0.645 0.624

p-value 0.013 < 0.001 < 0.001 < 0.001

95% CI 189.2, 1562 6.87, 6.97 5.66, 8.19 5.77, 8.25

Age (years)
Estimate -3.997 -0.007 -0.007 -0.009

SE 4.668 0.0004 0.009 0.008

p-value 0.392 < 0.001 0.388 0.305

95% CI -13.17, 5.18 -0.008, -0.007 -0.025, 0.009 -0.025, 0.008

Sex (Female reference)

Estimate 82.320 0.151 0.151 0.149

SE 61.365 0.005 0.111 0.110

p-value 0.181 < 0.001 0.173 0.175

95% CI -38.32, 203.0 0.14, 0.16 -0.07, 0.37 -0.06, 0.37

NCMC
Estimate -20.078 -0.038 -0.038 -0.046

SE 14.180 0.001 0.027 0.025

p-value 0.158 < 0.001 0.153 0.072

95% CI -47.95, 7.80 -0.041, -0.036 -0.091, 0.014 -0.099, 0.009

AIC 6244.3 183,071 5873.9 5863.4

DP - - 586.3 0.976
SE: standard error; CI: confidence interval; LM: linear regression model; NCMC: number of chronic medical conditions; AIC: Akaike information criterion; DP: dispersion 
parameter. All analyses were conducted in R version 4.0.2 [45]
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skewed (Fig.  2; top panel), the transformed data do not 
represent an obviously better approximation to the nor-
mal distribution (bottom two panels in Fig.  2). In fact, 
the transformed data appear to be substantially nega-
tively skewed (log-transform) and bounded (square 
root-transform).

A comparison of fitted models is presented in Table 3. 
All models yielded similar results in terms of statistical 
significance. There is strong evidence that age is nega-
tively associated with MVPA (i.e., older participants 
engage in fewer minutes of MVPA) and that, on average, 
males engage in more minutes of MVPA than females.

Although an inspection of the p-values suggests that 
the conclusions from the various models presented in 
Table  3 are very similar, we can use the AIC values to 
assist in identifying the best fitting model, as in Example 
1. Here we need to note that the AIC values of trans-
formed outcome models (log or square root) are not 
comparable with those of non-transformed outcome 
models because they are on different outcome data. 
Therefore, to enable model comparison, the AIC values 
from the models of transformed MVPA data need to be 
adjusted following a procedure described by Akaike [24]
(page 224). Table  3, thus, presents adjusted AIC values 
for the transformed MVPA models. The AICs suggest 
that the performance of the gamma regression model 

(GLM-gamma) and LM of the square-root transformed 
outcome (sqrt-LM) are very similar and the best among 
all the fitted models. In choosing between GLM-gamma 
and sqrt-LM, it should be remembered that the transfor-
mation can make it tricky to interpret the findings on the 
original scale. For example, when researchers are inter-
ested in how the average PA outcome differs between 
groups, or increases with each unit increase of a covari-
ate, the back-transformation of coefficients does not pro-
vide these estimates and, as a consequence, can make the 
interpretation of findings challenging. On the other hand, 
the GLM-gamma not only performs slightly better than 
sqrt-LM in terms of AIC values but also avoids transfor-
mation bias, and is suitable for data that are continuous, 
non-negative and right (positively) skewed. As discussed 
in Example 1, AIC values alone are not sufficient to 
choose an appropriate model. Considering the continu-
ous outcome, model selection should also be based on 
diagnostic plots of model fit (see Appendix A).

Furthermore, the predicted values of MVPA from 
all the fitted models along with observed MVPA are 
also plotted in Fig. 3 against age, and at fixed values of 
NCMC = 0. It can be seen from this figure that the pre-
dicted values of MVPA from each fitted model show 
two separate lines (sets of points), one for male and 
one for female (since the sex coefficient is significant, 

Fig. 2 Distribution of the original and transformed daily average minutes of MVPA for older adults from the ALECS study of physical activity in Hong 
Kong (n = 402)
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Table 3 Estimated associations of age, sex and NCMC with MVPA from different regression models for the ALECS study of physical 
activity in Hong Kong older adults (n = 402)

LM sqrt-LM log-LM GLM-gamma GLM-IG
Intercept

Estimate 115.567 14.835 8.754 7.742 8.548

SE 12.438 1.202 0.673 0.521 0.537

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

95% CI 91.10, 140.00 12.47, 17.20 7.43, 10.08 6.66, 8.81 7.39, 9.69

Age (years)
Estimate -1.263 -0.145 -0.085 -0.065 -0.076

SE 0.166 0.016 0.009 0.007 0.007

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

95% CI -1.59, -0.94 -0.18, -0.11 -0.10, -0.07 -0.08, -0.05 -0.09, -0.06

Sex (Female reference)

Estimate 19.593 1.885 0.899 0.754 0.816

SE 2.186 0.211 0.118 0.092 0.123

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

95% CI 15.29, 23.89 1.47, 2.30 0.67, 1.13 0.58, 0.94 0.59, 1.08

NCMC
Estimate -0.177 0.010 0.029 0.012 0.027

SE 0.505 0.049 0.027 0.021 0.022

p-value 0.727 0.841 0.289 0.559 0.219

95% CI -1.17, 0.82 -0.09, 0.11 -0.02, 0.08 -0.03, 0.05 -0.01, 0.07

Adjusted-AIC 3563 3321 3377 3320 3599
LM: linear regression model fit on untransformed MVPA; sqrt-LM: linear regression model fit on square-root transformed MVPA; log-LM: linear regression model fit 
on log transformed MVPA; GLM: generalized linear model; IG: inverse Gaussian; SE: standard error; CI: confidence interval; AIC: Akaike Information Criterion

Fig. 3 Observed and predicted values from various regression models of daily average minutes of MVPA for the ALECS study of physical activity in Hong 
Kong older adults
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a sex-difference is expected). It can be clearly seen 
from this plot that the untransformed LM produced 
some negative predicted values of the mean daily 
minutes of MVPA, which are impossible values for 
the response variable. This shows that the LM is not 
appropriate when the outcome is skewed, bounded 
and non-negative.

Interpreting sqrt_LM (compared to GLM)
As discussed in the transformation section above, inter-
preting coefficients under transformations is non-trivial. 
The age coefficient in sqrt-LM indicates that every year 
increase in age, after accounting for sex and NCMC, is 
associated with a change in the daily average minutes of 
MVPA of 2bi  = 2 × (-0.145) = -0.290 times the square 
root of the current daily average minutes of MVPA. It 
can be more illustrative to consider examples of how the 
outcome will change for possible values of the exposure. 
For example, for a person with an average of 60  min of 
MVPA, then a one-year increase in age of that person is 
associated with a decrease of 2.24 (-0.290 × 

√
60 ) daily 

average minutes of MVPA (negative coefficient estimate 
indicates a decrease). The 95% CI for the age coefficient 
ranges from − 0.18 to -0.11

which suggests a decrease of 1.70 to 2.79 daily aver-
age minutes of MVPA. In comparison, from the GLM-
gamma model, for every year increase in age (after 
adjusting for sex and NCMC) the daily average min-
utes of MVPA would be expected to decrease by a fac-
tor of 

(
e−0.065

)
= 0.937 (or expected to decrease by 

(1 − 0.937) × 100 = 6.3%). Put simply, each year increase 
in age is associated with a decrease of 6.3% in the daily 
average minutes of MVPA. The 95% CI can be inter-
preted in similar way as described in Example 1. Note 
that, as mentioned in Example 1, it is usual to present the 
IRR and corresponding 95% for the IRR in results tables 
for GLMs rather than the coefficients on the log scale as 
shown in Table 3.

Discussion
Physical activity researchers have often relied on LMs 
when assessing the relationship between predictor(s) 
and a PA outcome (count/continuous), even when the 
assumptions of the traditional model (e.g., normal dis-
tribution) are not satisfied. In practice, when handling 
skewed outcomes, most apply some type of transforma-
tion to obtain a normally distributed outcome variable 
[17–22]. However, transformations do not always nor-
malize distributions. Further, the choice of transforma-
tion can make it tricky to interpret the findings on the 
original scale. For example, when researchers are inter-
ested in how the average PA outcome differs between 
groups (e.g., sex), or increases with each unit increase 
of a covariate (e.g., age), the back-transformation of 

coefficients does not provide these estimates, and con-
sequently, can make the interpretation of findings 
challenging.

GLMs offer an alternative to the LM, especially for 
count, bounded and skewed outcomes commonly 
encountered in PA research. GLMs allow for response 
variables that have non-normal distributions. Although 
these GLMs offer potential, care has to be taken as it is 
still possible that bounded outcomes (for example, the 
number of days a week doing PA is bounded above by 
7) could have observations outside the plausible range 
using Poisson (although, we would not get negative pre-
dictions). Furthermore, it is important to be aware that 
the AIC alone is not sufficient for selecting an appro-
priate model. While AIC can be helpful to guide model 
selection, it is important to reflect on what is the most 
appropriate modelling choice for the type of data being 
considered.

This tutorial paper provides an introductory over-
view of appropriate methods for handling count, 
bounded and skewed continuous outcome data. How-
ever, alternative approaches may be required when 
there are a large proportion of zeros values in the 
count or skewed continuous outcome variable, i.e., 
when there are more zeros than expected under a stan-
dard count/continuous model. Conventional distribu-
tions usually cannot effectively explain and model this 
type of data. For this reason, different models which 
can account for a large proportion of zero observations 
must be applied instead [47]. Furthermore, the mod-
els presented assume all observations are independent. 
Correlated data arise frequently in PA research (e.g., 
longitudinal studies, clustered data) [48, 49]. Ignoring 
correlation in regression analysis can lead to incor-
rect conclusions, and therefore regression models that 
account for correlation should be applied instead [48, 
49]. Finally, although we discuss common approaches 
for handling skewed data, other methods exist which 
are outside the scope of this paper, such as bootstrap-
ping [50], the skew-t distribution [51–53], as well as 
non-parametric and semi-parametric approaches [54].

Conclusion
GLMs which more appropriately model non-normally 
distributed response variables should be considered as 
more suitable approaches for managing count, bounded 
and skewed outcomes rather than simply relying on 
transformations. Overall, GLMs can be a valuable alter-
native to LM. We recommend that PA researchers add 
the GLMs to their statistical toolboxes and become aware 
of situations when GLMs might be a better method than 
traditional approaches for modelling count, bounded and 
skewed continuous outcomes.
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Abbreviations
PA  physical activity
MVPA  moderate-to-vigorous physical activity
ALECS  the Active Lifestyle and Environment in Chinese Seniors
LM  Linear regression model
sqrt-LM  linear regression model fit on square-root transformed data
log-LM  linear regression model fit on log transformed data
GLM  generalized linear model
GLM-gamma  generalized linear model with gamma distribution
GLM-IG  generalized linear model with inverse Gaussian distribution
NCMC  number of chronic medical conditions
SGML  ML, maximum likelihood.
SE  standard error
CI  confidence interval
NB  negative binomial.
AIC  Akaike information criteria
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